Waves

- Characterized by Wavelength, Frequency, Amplitude, Speed

Wavelength (λ)
Frequency (ν)

ν Increases

λ Increases

Waves

Amplitude = A
here y = A \sin(x)

Interference

In Phase: Constructive Interference
Interference

Out of Phase: Destructive Interference

Light as a Wave

• Many wave-like properties:
 Interference & Diffraction
• Until about 1900 the wave model of light was fully accepted.

Light as a Wave

• Wavelength, frequency, speed related by:
 \[c = \lambda \nu \]
 • \(c \) fixed (3 x \(10^8 \) m/s)
 • \(\lambda \) (or \(\nu \)) specifies color of the light
 • NOT related to brightness
Light as a Particle

- In the early 20th century, several discoveries led to a particle model of light.
- **Photons**: "particles" of light
- Energy of a photon:
 \[E = h \nu \]

 \[h \text{ = "Planck's Constant"} \]

 \[= 6.626 \times 10^{-34} \text{ J s} \]

Photon Energy

- A laser emits red light with wavelength of 633 nm (1 nm = 10⁻⁹ m)
- What is the energy of a photon at this wavelength?
- A particular laser has an output of 1 mW (10⁻³ J/s). How many photons are emitted per second?
Photoelectric Effect

- Shine light on metal
- See electrons emitted
- Detect # of electrons & kinetic energies.

![Photoelectric Effect Diagram]

\[\text{Photons (} h \text{)} \rightarrow \text{Electrons} \]

\[\text{Metal Surface} \]

\[\text{Light in} \rightarrow \text{Electrons out} \]

Photoelectric Effect

- Experimental results NOT consistent with "wave model" of light.
- Postulate of photons ("particle model" of light) allows explanation. (Einstein, 1905)
Photoelectric Effect

- Light with $\nu = 1.3 \times 10^{15}$ s$^{-1}$ ejects electrons from cesium metal. If the kinetic energy of the electrons is 5.2×10^{-19} J, what is the binding energy of electrons in cesium metal?

HINT: Conservation of Energy!