Class #22
Molecular Geometry

CHEM 107
L.S. Brown
Texas A&M University

sp^3 Hybrid Orbitals

• Mix 4 orbitals, get 4 new identical orbitals
• Energy between s and p
• Angles of 109.5°
• Tetrahedral shape
• Let’s us explain bonding in methane (and lots of other molecules, too)
Other Hybridizations

• We can form other hybrids

 \[s + 3p\text{'s} \rightarrow sp^3 \]

 \[s + 2p\text{'s} \rightarrow sp^2 \]

 \[s + p \rightarrow sp \]

• Same ideas, but get orbitals at different angles

Steric Number & Hybridization

<table>
<thead>
<tr>
<th>Steric Number</th>
<th>Hybridization</th>
<th>Orbital Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(sp)</td>
<td>linear</td>
</tr>
<tr>
<td>3</td>
<td>(sp^2)</td>
<td>trigonal planar</td>
</tr>
<tr>
<td>4</td>
<td>(sp^3)</td>
<td>tetrahedral</td>
</tr>
</tbody>
</table>
Orbital Orientation vs. Molecular Geometry

- Molecular shape based on position of ATOMS
- All hybrids used for bonds → molecular geometry same as orbital orientation
- Lone pairs on central atom → molecular shape differs from orbital orientation

Steric Number of 2

- sp hybrids, linear orientation
- No lone pairs → linear molecule CO₂
Steric Number of 3

- \(sp^2 \) hybrids, trigonal planar orientation
- **No lone pairs** → trigonal planar molecule
 - \(BF_3, NO_3^- \)
- **One lone pair** → bent triatomic molecule
 - \(O_3, NO_2 \)

Steric Number of 4

- \(sp^3 \) hybrids, tetrahedral orientation
- **No lone pairs** → tetrahedral
 - \(CH_4, NH_4^+ \)
- **One lone pair** → trigonal pyramid
 - \(NH_3 \)
- **Two lone pairs** → bent
 - \(H_2O \)
Steric Number of 5

- No lone pairs \Rightarrow trigonal bipyramid molecule
 - PCl_5
- Lone pairs: Positions not all equivalent!

Steric Number of 5

- One lone pair \Rightarrow "seesaw" molecule
 - SF_4
- Two lone pairs \Rightarrow T-shape molecule
 - ClF_3
- Three lone pairs \Rightarrow Linear molecule
 - I_3^-
Steric Number of 6

- No lone pairs → octahedral
 \(\text{SF}_6 \)
- One lone pair → square pyramid
 \(\text{ClF}_5 \)
- Two lone pairs → square planar
 \(\text{XeF}_4 \)

Multiple Bonds

- How can orbitals overlap to form double or triple bonds?
- Start with a simple example: \(\text{C}_2\text{H}_4 \)
- First draw a Lewis structure
Ethylene - C_2H_4

- Carbons have steric number of 3 \rightarrow sp2
- Overlap of sp2 orbitals from each carbon forms single bond.
- Double bond?

Ethylene - C_2H_4

- Double bond?
- “Sideways” overlap of unhybridized p orbitals from carbon atoms
- “π bond”
Orbital overlap in C$_2$H$_4$

- Carbons have steric number of 2 \(\rightarrow \) sp
- “Sigma bond” from overlap of 2 sp hybrids
- Triple bond?
Acetylene - C$_2$H$_2$

\[
\text{H} - \text{C}=\text{C} - \text{H}
\]

- Triple bond \rightarrow 3 bonds
- Need 2 π bonds in addition to σ bond
- “Sideways” overlap of unhybridized p orbitals on carbon atoms, this time using 2 p orbitals from each carbon (p_x and p_y)

Orbital overlap in C$_2$H$_2$
Multiple Bonds

- In orbital overlap (or “localized bond”) model:
 - Single bond is a σ bond
 - Double bond consists of a σ bond and a π bond
 - Triple bond consists of a σ bond and two π bonds

Large Molecules

- Use same ideas as with small molecules
- Predict geometry around each inner atom
- Work your way up to a shape for the full molecule
Peroxyacetyl nitrate

\[
\text{H} - \text{C} - \text{C} - \text{O} - \text{O} - \text{N} - \text{O} - \text{H}
\]

- Finish Lewis structure
- Determine hybridization of all inner atoms
- Predict bond angles